Zapping tiny metal drops with sound creates wires for soft electronics

Zapping liquid metal droplets with ultrasound offers a new way to make wiring for stretchy, bendy electronics.

The technique, described in the Nov. 11 Science, adds a new approach to the toolbox for researchers developing circuitry for medical sensors that attach to the skin, wearable electronics and other applications where rigid circuit electronics are less than ideal (SN: 6/1/18).

The researchers began by drawing on sheets of stretchy plastic with lines of microscopic droplets made of an alloy of gallium and indium. The metal alloy is liquid at temperatures above about 16° Celsius.

Though the liquid metal is electrically conductive, the droplets quickly oxidize. That process covers each of them with a thin insulating layer. The layers carry static charges that push the drops apart, making them useless for connecting the LEDs, microchips and other components in electronic circuitry.

By hitting the microspheres with high-frequency sound waves, the researchers caused the microscopic balls to shed even smaller, nanoscopic balls of liquid metal. The tiny spheres bridge the gaps between the larger ones, and that close contact allows electrons to tunnel through the oxide layers so that the droplets can carry electricity.

When the plastic that the drops are printed on is stretched or bent, the larger balls of metal can deform, while the smaller ones act like rigid particles that shift around to maintain contact.

The researchers demonstrated their conductors by connecting electronics into a stretchy pattern of LEDs displaying the initials of the Dynamic Materials Design Laboratory, where the work was done. The team also built a sensor with the conductors that can monitor blood through a person’s skin (SN: 2/17/18).

Flexible electronics applications aren’t new, says materials scientist Jiheong Kang of the Korea Advanced Institute of Science and Technology in Daejeon, South Korea. But there are advantages of the new approach over other designs, he says, such as those that rely on channels filled with liquid metal that can leak if the circuitry is damaged. Liquid metal in the conductors that Kang and colleagues developed stays trapped in the tiny spheres that are embedded in the plastic and remains in place even if the material is torn.

Wires made of liquid metal have often been the go-to conductors for stretchy electronics, says Carmel Majidi, a researcher in mechanical engineering at Carnegie Mellon University in Pittsburgh who was not involved with the new study. Using ultrasound introduces a “novel approach to achieving that conductivity.” Other groups have managed that feat by heating circuits, exposing them to lasers, squishing them or vibrating the circuits to get droplets to connect to each other, he says.

Majidi isn’t convinced that the ultrasound approach is a game changer for flexible circuits. But he says that it’s high time the subject is appearing in a leading journal like Science. “I’m personally really excited to see the field overall, and this particular type of material architecture, is now gaining this visibility.”

Landslides shaped a hidden landscape within Yellowstone

DENVER — A hidden landscape riddled with landslides is coming into focus in Yellowstone National Park, thanks to a laser-equipped airplane.

Scientists of yore crisscrossed Yellowstone on foot and studied aerial photographs to better understand America’s first national park. But today researchers have a massive new digital dataset at their fingertips that’s shedding new light on this nearly 1-million-hectare natural wonderland.

These observations of Yellowstone have allowed a pair of researchers to pinpoint over 1,000 landslides within and near the park, hundreds of which had not been mapped before, the duo reported October 9 at the Geological Society of America Connects 2022 meeting. Most of these landslides likely occurred thousands of years ago, but some are still moving.
Mapping Yellowstone’s landslides is important because they can cripple infrastructure like roadways and bridges. The millions of visitors that explore the park each year access Yellowstone through just a handful of entrance roads, one of which recently closed for months following intense flooding.

In 2020, a small aircraft flew a few hundred meters above the otherworldly landscape of Yellowstone. But it wasn’t ferrying tourists eager for up close views of the park’s famous wolves or hydrothermal vents (SN: 7/21/20, SN: 1/11/21). Instead, the plane carried a downward-pointing laser that fired pulses of infrared light at the ground. By measuring the timing of pulses that hit the ground and reflected back toward the aircraft, researchers reconstructed the precise topography of the landscape.

Such “light detection and ranging,” or lidar, data reveal details that often remain hidden to the eye. “We’re able to see the surface of the ground as if there’s no vegetation,” says Kyra Bornong, a geoscientist at Idaho State University in Pocatello. Similar lidar observations have been used to pinpoint pre-Columbian settlements deep within the Amazon jungle (SN: 5/25/22).

The Yellowstone lidar data were collected as part of the 3D Elevation Program, an ongoing project spearheaded by the United States Geological Survey to map the entirety of the United States using lidar.
Bornong and geomorphologist Ben Crosby analyzed the Yellowstone data — which resolve details as small as about one meter — to home in on landslides. The team searched for places where the landscape changed from looking relatively smooth to looking jumbled, evidence that soil and rocks had once been on the move. “It’s a pattern-recognition game,” says Crosby, also of Idaho State University. “You’re looking for this contrast between the lumpy stuff and the smooth stuff.”

The researchers spotted more than 1,000 landslides across Yellowstone, most of which were clustered near the periphery of the park. That makes sense given the geography of Yellowstone’s interior, says Lyman Persico, a geomorphologist at Whitman College in Walla Walla, Wash., who was not involved in the research. The park sits atop a supervolcano, whose previous eruptions blanketed much of the park in lava (SN: 1/2/18). “You’re sitting in the middle of the Yellowstone caldera, where everything is flat,” says Persico.

But steep terrain also abounds in the national park, and there’s infrastructure in many of those landslide-prone areas. In several places, the team found that roads had been built over landslide debris. One example is Highway 191, which skirts the western edge of Yellowstone.

An aerial image of U.S. Highway 191 near Yellowstone shows barely perceptible signs of a long-ago landslide. But laser mapping reveals the structure and extent of the landslide in much greater detail (use the slider to compare images). It’s one of more than 1,000 landslides uncovered by new maps.
It’s worth keeping an eye on this highway since it funnels significant amounts of traffic through regions apt to experience landslides, Bornong says. “It’s one of the busiest roads in Montana.”

There’s plenty more to learn from this novel look at Yellowstone, Crosby says. Lidar data can shed light on geologic processes like volcanic and tectonic activity, both of which Yellowstone has in spades. “It’s a transformative tool,” he says.

Here’s what happened to the Delaware-sized iceberg that broke off Antarctica

It was the rift watched ‘round the world.

In July 2017, after weeks of anticipation, a massive iceberg about the size of Delaware split from the Antarctic Peninsula (SN: 7/12/17). Satellite images show that the orphaned iceberg, known as A68, ultimately disintegrated in the Southern Ocean. Now, researchers say they have pieced together the powerful forces that led to that final breakup.

Polar scientist Alex Huth of Princeton University and colleagues combined observations of the iceberg’s drift with simulations of ocean currents and wind stress. Iceberg A68a, the largest remaining chunk of the original berg, was caught in a tug-of-war of ocean currents, and the strain of those opposing forces probably pulled the iceberg apart, the team reports October 19 in Science Advances.
After A68’s separation from the Larsen C ice shelf, researchers had questions — such as what creatures live on the seafloor in the ice’s dark shadow (SN: 2/8/19). As for the iceberg itself, it took a while to get moving, lingering in the neighborhood for about a year (SN: 7/23/18). By December 2020, satellite images show, the berg had clearly seen some action and was just two-thirds of its original size.
The new simulations suggest how A68a probably met its fate. On December 20, 2020, the long, slender “finger” at one end of the iceberg drifted into a strong, fast-moving current. The rest of the ice remained outside the current. The tension rifted the berg, and the finger sheared off and broke apart within a few days.

Shear stress is a previously unknown mechanism for large iceberg breakup, and isn’t represented in climate simulations, the team says. In the Southern Ocean, the melting of massive bergs can be a large source of cold freshwater to the ocean surface. That, in turn, can have a big impact on ocean circulation and the global climate.

Why fuzzy definitions are a problem in the social sciences

U.S. millennials are rejecting suburbia and moving back to the city. That was a prevailing idea in 2019, when I started as the social sciences reporter at Science News. But when I began digging into a possible story on the phenomenon, I encountered an incoherent mess. Some research showed that suburbs were growing, others that suburbs were shrinking and yet others showed growth in both suburbs and cities.

Unable to make sense of that maze of findings, I shelved the story idea. Then, several months later, I stumbled across a Harvard University white paper explaining that disagreement in the field stems from competing definitions of what distinguishes a city from a suburb. Some researchers define the suburbs as areas falling outside census-designated cities. Others look only for markers of suburbanism, such as a wealth of single-family houses and car-based commutes, the researchers wrote.
I have encountered this type of fuzziness around definitions of all sorts of terms and concepts in the years I’ve covered the social sciences. Sometimes researchers simply assume that their definition of a key concept is the definition. Or they nod briefly at other definitions, and then go forth with whichever one they choose, without much explanation why. Other times, researchers in one subfield choose one definition, and researchers in another subfield choose a different one — each without ever knowing of the other’s existence. It’s enough to drive any reporter to tear their hair out.

“If you look … you will find this morass of definitions and measurements” in the social sciences, says quantitative psychologist Jessica Flake of McGill University in Montreal. My experience was a common one, she assured me.

Definitional morasses exist in other scientific fields too. Biologists frequently disagree about how best to define the word “species” (SN: 11/1/17). Virologists squabble over what counts as “alive” when it comes to viruses (SN: 11/1/21). And not all astronomers are happy with the decision to define the word “planet” in a way that left Pluto out in the cold as a mere dwarf planet (SN: 8/24/21).

But the social sciences have some special challenges, Flake says. The field is a youngster compared with a discipline like astronomy, so has had less time to sort out its definitions. And social science concepts are often inherently subjective. Describing abstract ideas like motivation or feelings can be squishier than describing, say, a meteorite.

It’s tempting to assume, as I did until I began researching this column, that a single, imperfect definition for individual concepts is preferable to this definitional cacophony. And some researchers encourage this approach. “While no suburban definition will be perfect, standardization would increase understanding of how suburban studies relate to each other,” the Harvard researchers wrote in that suburbia paper.

But a recent study taking aim at how we define the middle class showed me how alternative definitions can lead to a shift in perspective.

While most researchers use income as a proxy for class, these researchers used people’s buying patterns. That revealed that a fraction of people who appear middle class by income struggle to pay for basic necessities, such as housing, child care and groceries, the team reported in July in Social Indicators Research. That is, they live as if they are working class.

What’s more, that vulnerable group skews Black and Hispanic, a disparity that arises, in part, because these families of color often lack the generational wealth of white families, says Melissa Haller, a geographer at Binghamton University in New York. So when calamity strikes, families without that financial cushion can struggle to recover. Yet a government or nonprofit organization looking to direct aid toward the neediest families, and relying solely on income-based metrics, would overlook this vulnerable group.

“Depending on what definition you start with, you will see different facts,” says Anna Alexandrova, a philosopher of science at the University of Cambridge. A standardized definition of middle class, for example, could obscure some of those key facts.

In the social sciences, what’s needed instead of conceptual unity, Alexandrova says, is conceptual clarity.

Though social scientists disagree about how to go about solving this problem of clarity, Flake says that failure to tackle the issue jeopardizes the field as much as other crises rocking the discipline (SN: 8/27/18). That’s because how a topic is defined determines the scales, surveys and other instruments used to study that concept. And that in turn shapes how researchers crunch numbers and arrive at conclusions.

Defining one’s key terms and then selecting the right tool is somewhat straightforward when relying on large, external datasets. For instance, instead of using national income databases, as is common in the study of the middle class, Haller and her team turned to the federal government’s Consumer Expenditure Surveys to understand people’s daily and emergency purchases.

But often social scientists, particularly psychologists, develop their own scales and surveys to quantify subjective concepts, such as self-esteem, mood or well-being. Definitions of those terms — and the instruments used to study them — can take on a life of their own, Flake says.

She and her team recently showed how this process plays out in the May-June American Psychologist. They combed through the 100 original studies and 100 replications included in a massive reproducibility project in psychology. The researchers zoomed in on 97 multi-item scales — measuring concepts such as gratitude, motivation and self-esteem — used in the original studies, and found that 54 of those scales had no citations to show where the scales originated. That suggests that the original authors defined their idea, and the tool used to measure that idea, on the fly, Flake says. Research teams then attempted to replicate 29 of those studies without digging into the scales’ sources, calling into question the meaning of their results.

For Flake, the way to achieve conceptual clarity is straightforward, if unlikely. Researchers must hit the brakes on generating new ideas, or replicating old ideas, and instead interrogate the morass of old ones.

She points to one promising, if labor-intensive, effort: the Psychological Science Accelerator, a collaboration of over 1,300 researchers in 84 countries. The project aims to identify big ideas in psychology, such as face perception and gender prejudice, and accumulate all the instruments and resulting data used to make sense of those ideas in order to discard, refine or combine existing definitions and tools.

“Instead of running replications, why don’t we use [this] massive team of researchers who represent a lot of perspectives around the world and review concepts first,” Flake says. “We need to stop replicating garbage.”

I couldn’t agree more.

Wind turbines could help capture carbon dioxide while providing power

Wind turbines could offer a double whammy in the fight against climate change.

Besides harnessing wind to generate clean energy, turbines may help to funnel carbon dioxide to systems that pull the greenhouse gas out of the air (SN: 8/10/21). Researchers say their simulations show that wind turbines can drag dirty air from above a city or a smokestack into the turbines’ wakes. That boosts the amount of CO2 that makes it to machines that can remove it from the atmosphere. The researchers plan to describe their simulations and a wind tunnel test of a scaled-down system at a meeting of the American Physical Society’s Division of Fluid Dynamics in Indianapolis on November 21.
Addressing climate change will require dramatic reductions in the amount of carbon dioxide that humans put into the air — but that alone won’t be enough (SN: 3/10/22). One part of the solution could be direct air capture systems that remove some CO2 from the atmosphere (SN: 9/9/22).

But the large amounts of CO2 produced by factories, power plants and cities are often concentrated at heights that put it out of reach of machinery on the ground that can remove it. “We’re looking into the fluid dynamics benefits of utilizing the wake of the wind turbine to redirect higher concentrations” down to carbon capture systems, says mechanical engineer Clarice Nelson of Purdue University in West Lafayette, Ind.

As large, power-generating wind turbines rotate, they cause turbulence that pulls air down into the wakes behind them, says mechanical engineer Luciano Castillo, also of Purdue. It’s an effect that can concentrate carbon dioxide enough to make capture feasible, particularly near large cities like Chicago.

“The beauty is that [around Chicago], you have one of the best wind resources in the region, so you can use the wind turbine to take some of the dirty air in the city and capture it,” Castillo says. Wind turbines don’t require the cooling that nuclear and fossil fuel plants need. “So not only are you producing clean energy,” he says, “you are not using water.”

Running the capture systems from energy produced by the wind turbines can also address the financial burden that often goes along with removing CO2 from the air. “Even with tax credits and potentially selling the CO2, there’s a huge gap between the value that you can get from capturing it and the actual cost” that comes with powering capture with energy that comes from other sources, Nelson says. “Our method would be a no-cost added benefit” to wind turbine farms.

There are probably lots of factors that will impact CO2 transport by real-world turbines, including the interactions the turbine wakes have with water, plants and the ground, says Nicholas Hamilton, a mechanical engineer at the National Renewable Energy Laboratory in Golden, Colo., who was not involved with the new studies. “I’m interested to see how this group scaled their experiment for wind tunnel investigation.”

Insect swarms might generate as much electric charge as storm clouds

You might feel a spark when you talk to your crush, but living things don’t require romance to make electricity. A study published October 24 in iScience suggests that the electricity naturally produced by swarming insects like honeybees and locusts is an unappreciated contributor to the overall electric charge of the atmosphere.

“Particles in the atmosphere easily charge up,” says Joseph Dwyer, a physicist at the University of New Hampshire in Durham who was not involved with the study. “Insects are little particles moving around the atmosphere.” Despite this, the potential that insect-induced static electricity plays a role in the atmosphere’s electric field, which influences how water droplets form, dust particles move and lightning strikes brew, hasn’t been considered before, he says.
Scientists have known about the minuscule electric charge carried by living things, such as insects, for a long time. However, the idea that an electric bug-aloo could alter the charge in the air on a large scale came to researchers through sheer chance.

“We were actually interested in understanding how atmospheric electricity influences biology,” says Ellard Hunting, a biologist at the University of Bristol in England. But when a swarm of honeybees passed over a sensor meant to pick up background atmospheric electricity at the team’s field station, the scientists began to suspect that the influence could flow the other way too.

Hunting and colleagues, including biologists and physicists, measured the change in the strength of electric charge when other honeybee swarms passed over the sensor, revealing an average voltage increase of 100 volts per meter. The denser the insect swarm, the greater the charge produced.

This inspired the team to think about even larger insect swarms, like the biblical hordes of locusts that plagued Egypt in antiquity (and, in 2021, Las Vegas (SN: 3/30/21)). Flying objects, from animals to airplanes, build up static electricity as they move through the air. The team measured the charges of individual desert locusts (Schistocerca gregaria) as they flew in a wind tunnel powered by a computer fan. Taking data on locust density from other studies, the team then used a computer simulation based on the honeybee swarm data to scale up these single locust measurements into electric charge estimates for an entire locust swarm. Clouds of locusts could produce electricity on a per-meter basis on par with that in storm clouds, the scientists report.

Hunting says the results highlight the need to explore the unknown lives of airborne animals, which can sometimes reach much greater heights than honeybees or locusts. Spiders, for example, can soar kilometers above Earth when “ballooning” on silk threads to reach new habitats (SN: 7/5/18). “There’s a lot of biology in the sky,” he says, from insects and birds to microorganisms. “Everything adds up.”

Though some insect swarms can be immense, Dwyer says that electrically charged flying animals are unlikely to ever reach the density required to produce lightning like storm clouds do. But their presence could interfere with our efforts to watch for looming strikes that could hurt people or damage property.

“If you have something messing up our electric field measurements, that could cause a false alarm,” he says, “or it could make you miss something that’s actually important.” While the full effect that insects and other animals have on atmospheric electricity remains to be deduced, Dwyer says these results are “an interesting first look” into the phenomenon.

Hunting says this initial step into an exciting new area of research shows that working with scientists from different fields can spark shocking findings. “Being really interdisciplinary,” he says, “allows for these kinds of serendipitous moments.”

How having health care workers handle nonviolent police calls may impact crime

For the last two years, a person acting erratically in downtown Denver has likely first encountered unarmed health care workers rather than police. That shift stems from the rollout of a program known as Support Team Assisted Response, or STAR, which sends a mental health clinician and paramedic to respond to certain 911 calls about nonviolent behavior.

The program, and others like it, aim to defuse the tensions that can arise when police officers confront civilians in distress. Critics of these experimental programs have suggested that such reduced police involvement could allow crime to flourish. Now, researchers have found that during its pilot phase, the STAR program did not appear to lead to more violent crime. And reports of minor crimes substantially decreased, the researchers conclude June 8 in Science Advances.
Much of that reduction occurred because the health responders do not issue citations or make arrests (SN: 12/18/21). But even that reduction in reported crime is beneficial, says economist Thomas Dee of Stanford University. “That person is getting health care instead of being arrested.”

Following the death of George Floyd at the hands of a white police officer and the subsequent rise of the Black Lives Matter movement in the summer of 2020, cities throughout the country have been rolling out programs like STAR. “We cannot police our way out of every social problem,” says Temitope Oriola, a sociologist at the University of Alberta in Edmonton, Canada. But so far there have been few studies of these programs’ effects on crime, let alone on the reduction of violence between police and the public (SN: 7/9/20).

Dee and Jayme Pyne, a sociologist also at Stanford, looked at the STAR program’s impact on crime reports. The duo investigated the program’s pilot phase, which ran from June to November 2020 and encompassed eight of the city’s 36 police precincts. Police officers and 911 operators in those eight precincts redirected calls for minor and non-dangerous complaints to STAR providers. These calls included concerns about trespassing, indecent exposure, intoxication and similar low-level offenses. During the six-month pilot, STAR providers responded to 748 calls, averaging roughly six incidents per eight-hour shift.

Dee and Pyne analyzed criminal offenses in all 36 precincts from December 2019 to November 2020. They then compared the change in crime rates in the eight precincts receiving STAR services with the change in crime rates in the other 28 precincts. The rate of violent crime remained unchanged across the board, including in the precincts where the STAR program was active, the researchers found. But there was a 34 percent drop in reports of minor offenses in the STAR precincts, from an average of about 84 offenses per month in each district to an average of about 56 citations.

The data also suggest that the actual level of minor crimes and complaints dropped too — that is, the drop wasn’t just due to a lack of reporting, the researchers say. Prior to the pilot, minor offenses in the eight precincts receiving STAR services resulted in an average of 1.4 citations per incident. So having health care workers rather than police respond to 748 such calls should generate roughly 1,000 fewer citations, the authors calculate. Instead, citations dropped by almost 1,400. Providing people in crisis with access to health services may be preventing them from reoffending, Dee says.

Research into these sorts of programs is crucial, says Michael Vermeer, a justice policy researcher with the RAND Corporation, a public policy research organization headquartered in Santa Monica, Calif. But he cautions against drawing firm conclusions from a single study launched at the onset of the COVID-19 crisis, which dramatically changed crime rates and patterns across the country. “They just got confounded by the pandemic,” Vermeer says.

Dee agrees that he and other researchers now need to replicate this study across more cities, and also scale up in Denver. The city has since expanded the STAR program beyond the initial pilot.

Even if researchers eventually find that STAR and similar programs don’t budge crime rates much, that doesn’t mean that the programs are unsuccessful, says sociologist Brenden Beck of the University of Colorado Denver. He points to the potential to save taxpayer dollars. Dee and Pyne estimate that a single offense processed through STAR costs about $150, compared with the roughly $600 it costs to process one through the criminal justice system.

What’s more, helping people having nonviolent mental health crises get help and stay out of jail lets these individuals hold onto their jobs and stay present in their family members’ lives, Beck says. “I would hope we as a research community move on to study the benefit of these programs not just in terms of crime but also in terms of human welfare.”

How neutrinos could ensure a submarine’s nuclear fuel isn’t weaponized

Nuclear submarines might provide rogue nations with a path to nuclear weapons. But neutrinos could help reveal attempts to go from boats to bombs.

Neutrinos, lightweight subatomic particles that are released from the reactors that power nuclear subs, could expose the alteration or removal of the nuclear fuel for nefarious purposes, physicists report in a paper accepted in Physical Review Letters. Crucially, this monitoring could be done remotely, while a submarine is in a port with its reactor shut off.
To ensure that countries without nuclear weapons don’t develop them, international inspectors monitor the use of many types of nuclear technology around the world. Nuclear submarines are particularly worrisome. Many use highly enriched uranium, a potent type of fuel that can be weaponized relatively easily. But submarines are protected from monitoring by a loophole. Unlike nuclear power plants, nuclear submarines are used for secretive military purposes, so physical inspections could infringe on a country’s national security.

“Neutrino-based methods can considerably reduce the intrusiveness by making measurements at a distance, without having to physically access the vessel,” says nuclear scientist Igor Jovanovic of the University of Michigan in Ann Arbor, who was not involved with the research.

These particles — specifically their antimatter variety, antineutrinos — stream in droves from operating nuclear reactors. The particles interact feebly with other matter, allowing them to pass through solid material, including a submarine hull. So a neutrino detector placed near a submarine could reveal what’s going on inside, say neutrino physicists Bernadette Cogswell and Patrick Huber of the Center for Neutrino Physics at Virginia Tech in Blacksburg.

Scientists have previously suggested using neutrinos to detect other nuclear misdeeds, such as nuclear weapons tests (SN: 8/20/18).

But submarines, often on the move, are hard to monitor with stationary instruments. When the vessels do sit in port, their nuclear reactors may be turned off. So the researchers came up with a solution: They’d look at neutrinos produced by the decays of varieties of chemical elements, or isotopes, that remain after a reactor shuts down. A detector located in the water about 5 meters underneath the sub’s reactor could measure neutrinos produced in decays of certain cerium and ruthenium isotopes. Those measurements would reveal if nuclear material had been removed or swapped out.

This method of monitoring a reactor that’s off is “very clever,” says physicist Ferenc Dalnoki-Veress of the Middlebury Institute of International Studies at Monterey in California.

But the idea would still require buy-in from each country to agree to detectors in submarine berths. “Something like this would be so much better if it wouldn’t require cooperation,” says physicist Giorgio Gratta of Stanford University.

Submarine monitoring may become more pressing in the near future. So far, all countries that have nuclear submarines already possess nuclear weapons, so the issue was hypothetical. But that’s set to change. The United States and the United Kingdom, two nuclear weapons states, announced last September that they are entering into a cooperative security agreement with Australia and will help the country, a non-nuclear weapons state, acquire nuclear submarines.

There’s little suspicion that Australia would use these submarines as a cover for a nuclear weapons program. But “you still have to worry about the precedent that that sets,” Cogswell says. So, she says, monitoring nuclear submarines is newly important. “The question was how the heck to do that.”

A newfound, oddly slow pulsar shouldn’t emit radio waves — yet it does

Astronomers have added a new species to the neutron star zoo, showcasing the wide diversity among the compact magnetic remains of dead, once-massive stars.

The newfound highly magnetic pulsar has a surprisingly long rotation period, which is challenging the theoretical understanding of these objects, researchers report May 30 in Nature Astronomy. Dubbed PSR J0901-4046, this pulsar sweeps its lighthouse-like radio beam past Earth about every 76 seconds — three times slower than the previous record holder.
While it’s an oddball, some of this newfound pulsar’s characteristics are common among its relatives. That means this object may help astronomers better connect the evolutionary phases among mysterious species in the neutron star menagerie.

Astronomers know of many types of neutron stars. Each one is the compact object left over after a massive star’s explosive death, but their characteristics can vary. A pulsar is a neutron star that astronomers detect at a regular interval thanks to its cosmic alignment: The star’s strong magnetic field produces beams of radio waves emanating from near the star’s poles, and every time one of those beams sweeps across Earth, astronomers can see a radio pulse.

The newfound, slowpoke pulsar sits in our galaxy, roughly 1,300 light-years away. Astrophysicist Manisha Caleb of the University of Sydney in Australia and her colleagues found it in data from the MeerKAT radio telescope outside Carnarvon, South Africa.

Further observations with MeerKAT revealed not only the pulsar’s slow, steady radio beat — a measure of how fast it spins — but also another important detail: The rate at which the spin slows as the pulsar ages. And those two bits of info revealed something odd about this pulsar. According to theory, it should not be emitting radio waves. And yet, it is.

As neutron stars age, they lose energy and spin more slowly. According to calculations, “at some point, they’ve exhausted all their energy, and they cease to emit any sort of emission,” Caleb says. They’ve become dead to detectors.

A pulsar’s rotation period and the slowdown of its spin relates to the strength of its magnetic field, which accelerates subatomic particles streaming from the star and, in turn, generates radio waves. Any neutron stars spinning as slowly as PSR J0901-4046 are in this stellar “graveyard” and shouldn’t produce radio signals.

But “we just keep finding weirder and weirder pulsars that chip away at that understanding,” says astrophysicist Maura McLaughlin of West Virginia University in Morgantown, who wasn’t involved with this work.

The newfound pulsar could be its own unique species of neutron star. But in some ways, it also looks a bit familiar, Caleb says. She and her colleagues calculated the pulsar’s magnetic field from the rate its spin is slowing, and it’s incredibly strong, similar to magnetars (SN: 9/17/02). This hints that PSR J0901-4046 could be what’s known as a “quiescent magnetar,” which is a pulsar with very strong magnetic fields that occasionally emits brilliantly energetic bursts of X-rays or other radiation. “We’re going to need either X-ray emission or [ultraviolet] observations to confirm whether it is indeed a magnetar or a pulsar,” she says.

The discovery team still has additional observations to analyze. “We do have a truckload more data on it,” says astrophysicist Ian Heywood of the University of Oxford. The researchers are looking at how the object’s brightness is changing over time and whether its spin abruptly changes, or “glitches.”

The astronomers also are altering their automated computer programs, which scan the radio data and flag intriguing signals, to look for these longer-duration spin periods — or even weirder and more mysterious neutron star phenomena. “The sweet thing about astronomy, for me, is what’s out there waiting for us to find,” Heywood says.

How I’ll decide when it’s time to ditch my mask

For weeks, I have been watching coronavirus cases drop across the United States. At the same time, cases were heading skyward in many places in Europe, Asia and Oceania. Those surges may have peaked in some places and seem to be on a downward trajectory again, according to Our World in Data.

Much of the rise in cases has been attributed to the omicron variant’s more transmissible sibling BA.2 clawing its way to prominence. But many public health officials have pointed out that the surges coincide with relaxing of COVID-19 mitigation measures.

People around the world are shedding their masks and gathering in public. Immunity from vaccines and prior infections have helped limit deaths in wealthier countries, but the omicron siblings are very good at evading immune defenses, leading to breakthrough infections and reinfections. Even so, at the end of February, the U.S. Centers for Disease Control and Prevention posted new guidelines for masking, more than doubling the number of cases needed per 100,000 people before officials recommended a return to the face coverings (SN: 3/3/22).

Not everyone has ditched their masks. I have observed some regional trends. The majority of people I see at my grocery store and other places in my community in Maryland are still wearing masks. But on road trips to the Midwest and back, even during the height of the omicron surge, most of the faces I saw in public were bare. Meanwhile, I was wearing my N95 mask even when I was the only person doing so. I reasoned that I was protecting myself from infection as best I could. I was also protecting my loved ones and other people around me from me should I have unwittingly contracted the virus.

But I will tell you a secret. I don’t really like wearing masks. They can be hot and uncomfortable. They leave lines on my face. And sometimes masks make it hard to breathe. At the same time, I know that wearing a good quality, well-fitting mask greatly reduces the chance of testing positive for the coronavirus (SN: 2/12/21). In one study, N95 or KN95 masks reduced the chance of testing positive by 83 percent, researchers reported in the February 11 Morbidity and Mortality Weekly Report. And school districts with mask mandates had about a quarter of the number of in-school infections as districts where masks weren’t required (SN: 3/15/22).

With those data in mind, I am not ready to go barefaced. And I’m not alone. Nearly 36 percent of the 1,916 respondents to a Science News Twitter poll said that they still wear masks everywhere in public. Another 28 percent said they mask in indoor crowds, and 23 percent said they mask only where it’s mandatory. Only about 12 percent have ditched masks entirely.

Some poll respondents left comments clarifying their answers, but most people’s reasons for masking aren’t clear. Maybe they live in the parts of the country or world where transmission levels are high and hospitals are at risk of being overrun. Maybe they are parents of children too young for vaccination. Perhaps they or other loved ones are unvaccinated or have weakened immune systems that put them at risk for severe disease. Maybe, like me, they just don’t want to get sick — with anything.

Before the pandemic, I caught several colds a year and had to deal with seasonal allergies. Since I started wearing a mask, I haven’t had a single respiratory illness, though allergies still irritate my eyes and make my nose run. I’ve also got some health conditions that raise my risk of severe illness. I’m fully vaccinated and boosted, so I probably won’t die if I catch the virus that causes COVID-19, but I don’t want to test it (SN: 11/8/21). Right now, I just feel safer wearing a mask when I’m indoors in public places.

I’ve been thinking a lot about what would convince me that it was safe to go maskless. What is the number or metric that will mark the boundary of my comfort zone?

The CDC now recommends using its COVID-19 Community Levels map for determining when mask use is needed. That metric is mostly concerned with keeping hospitals and other health care systems from becoming overwhelmed. By that measure, most of the country has the green light to go maskless. I’m probably more cautious than the average person, but the levels of transmission in that metric that would trigger mask wearing — 200 or more cases per 100,000 population — seem high to me, particularly since CDC’s prior recommendations urged masking at a quarter of that level.

The metric is designed for communities, not individuals. So what numbers should I, as an individual, go by? There’s always the CDC’s COVID-19 Integrated County View that tracks case rates and test positivity rates — the percentage of tests that have a positive result. Cases in my county have been ticking up in the last few days, with 391 people having gotten COVID-19 in the last week — that’s about 37 out of every 100,000 people. That seems like relatively low odds of coming into contact with a contagious person. But those are only the cases we know about officially. There may be many more cases that were never reported as people take rapid antigen tests at home or decide not to test. There’s no way to know exactly how much COVID-19 is out there.

And the proportion of cases caused by BA.2 is on the rise, with the more infectious omicron variant accounting for about 35 percent of cases nationwide in the week ending March 19. In the mid-Atlantic states where I live, about 30 percent of cases are now caused by BA.2. But in some parts of the Northeast, that variant now causes more than half of cases. The increase is unsettling but doesn’t necessarily mean the United States will experience another wave of infections as Europe has. Or maybe we will. That uncertainty makes me uncomfortable removing my mask indoors in public right now.

Maybe in a few weeks, if there’s no new surge in infections, I’ll feel comfortable walking around in public with my nose and mouth exposed. Or maybe I’ll wait until the number of cases in my county is in single digits. I’m pretty sure there will come a day when I won’t feel the need to filter every breath, but for me, it’s not that time yet. And I truthfully can’t tell you what my magic number will be.

Here’s what I do know: Even if I do decide to have an unmasked summer, I will be strapping my mask back on if COVID-19 cases begin to rise again.